A ROBUST ONLINE SIGNATURE BASED CRYPTOSYSTEM

Ashok K. Bhateja
Scientific Analysis Group
Defence R & D Organization, Delhi, India

Santanu Chaudhury
Department of Electrical Engineering
Indian Institute of Technology, Delhi, India

P. K. Saxena
Scientific Analysis Group
Defence R & D Organization, Delhi, India
Outline

- Introduction
 - The Problem Statement
 - Fuzzy vault
- Proposed Scheme
 - Feature Extraction
 - AdaBoost Algorithm
 - Weighted Back Propagation Algorithm
 - Encoding & Decoding in the proposed cryptosystem
- Experimental Results
- Conclusion
- References
Cryptography: Protect information by ensuring
- Confidentiality
- Integrity and
- Authenticity

Cryptosystem:
- Binds plaintext x and key k using a mathematical function f
- Ciphertext $y = f(x, k)$
- Extraction of x or k is computationally hard

Management and maintenance of the keys is one of the major problems in a cryptosystem

Cryptographic keys stored in highly secure location with
- Password
- Personal Identification Number (PIN)
Introduction

- Signatures are used
 - Financial transactions
 - Documents
 - Verification

- Dynamic features: velocity, slope along with static (shape) features.

- Variations in online signature are more than other biometric such as fingerprint, iris, and face

- Allowing for these variations and providing protection against forgers is a challenging task.
Problem Statement

- Development of a robust online signature based cryptosystem to hide the secret by binding it with important features of online signature

- Important features
 - Consistent in the genuine signature and
 - Inconsistent in the forged signature
Fuzzy Vault

- Developed by Juels and Sudan [1] in 2002
- Implemented by Uludag et al. in 2005 using fingerprint biometric [2]
- Security is based on the infeasibility of the polynomial reconstruction problem
- In 2006, Kholmatov and Yanikoglu used trajectory crossing, ending and high curvature points of online signature [3] for the construction of the fuzzy vault.
Fuzzy Vault

Fuzzy Vault Encoding

Fuzzy Vault Decoding
A robust online signature based cryptosystem to hide the secret by binding it with important online signature templates

- **[Slicing]:** The online signature is divided into fixed number of slices $(m \times k)$.
- **[Feature Extraction]:** Find the values of all the important features.
- **[Classifiers input]:** Form k sets of slices, with each set consisting of m consecutive slices. The m values of the features form the input for the classifier.
- **[Training]:** For each set of slices, train the networks using Weighted Back propagation with AdaBoost.
- **[Encoding]:** Creation of LUT
- **[Decoding]:** Finding secret
Optimal number of slices

Selecting optimal number of slices

Number of slices
Aggregate goodness
Feature Extraction

- Divide the signature into \(n \) time slices

- Find \(S_i \) and \(S'_i \) i.e. sum of the variations of the genuine and forged signatures, about the mean of the genuine signature

\[
S_i = \sum_{j=1}^{u} \sum_{k=1}^{s_g} \sigma_{ijk}^2 \quad \& \quad S'_i = \sum_{j=1}^{u} \sum_{k=1}^{s_f} \sigma'_{ijk}^2
\]

Where \(\sigma_{ijk}^2 \) is variance of \(j \)th user in \(k \)th genuine signature in \(i \)th slice and \(\sigma'_{ijk}^2 \) is the variance of \(j \)th user in \(k \)th forged signatures in \(i \)th slice about the mean of genuine signature in the same \(i \)th slice.

- Goodness function \(G_f \) of feature \(f \)

\[
G_f = \frac{\sum_{i=1}^{n} S_i'}{\sum_{i=1}^{n} S_i}
\]

- The features having goodness value greater than a threshold are the important features
Adaptive Boosting

- All data-points are assigned equal initial weights
- In each iteration:
 - A weak classifier is trained based on the weighted samples
 - The weights of misclassified data-points are increased
 - So next classifier gives more emphasis to data-points with more weight
- A weighted vote of selected weak classifiers is used to decide the output of the ensemble
AdaBoost — Weighted Learning

Pseudocode

Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in \mathcal{X}, y_i \in \{-1, +1\}\).
Initialize: \(D_1(i) = 1/m\) for \(i = 1, \ldots, m\).

For \(t = 1, \ldots, T\):
- Train weak learner using distribution \(D_t\).
- Get weak hypothesis \(h_t: \mathcal{X} \rightarrow \{-1, +1\}\).
- Aim: select \(h_t\) with low weighted error:

\[
\varepsilon_t = \Pr_{i \sim D_t}[h_t(x_i) \neq y_i].
\]

- Choose \(\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right) \).
- Update, for \(i = 1, \ldots, m\):

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is a normalization factor (chosen so that \(D_{t+1}\) will be a distribution).

Output the final hypothesis:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right).
\]
Weighted Back Propagation Algorithm

Forwards pass
- For each hidden layer and output layer neurons
 - Compute the weighted sum (\(S\)) of the activation of the previous layer neurons.
 - Find the activation of the neuron. i.e. sigmoid function of the sum \(S\).
- Compute the error of each of the output layer neurons
- Find the weighted error i.e. weight of the training example \(\times\) total error

Backward pass
- Find local gradient of the neurons
- Adjust the weights.
- Iterate forward and backward pass until convergence of the network.
Online Signature Based Cryptosystem Encoding

- **Creation of secret polynomial P.**
 - Find CRC (Cyclic Redundancy Check) of the secret (s bits) using r bit generating polynomial
 - Concatenate the CRC with the secret. Let it be SC
 - Convert SC into the elements of the field.
 - Construct polynomial P of degree $k-1$ over the field $GF(2^r)$.

- **Creation of LUT**
 - Randomly select k rows of the table, one for each set of slices
 - Randomly select k elements of the field $GF(2^r)$, one for each set of slices. Call them x-values.
 - Find the polynomial projections of the x-values in the field
 - Store the weights of the BPNN (Back Propagation Neural Network) along with α’s (importance of the classifier) in the first column of the selected row, corresponding x-value and their polynomial projection in second and third columns respectively
 - Fill the remaining second and third column entries of LUT by randomly selecting the elements of $GF(2^r)$
 - Fill the remaining entries of the first column by randomly generated weight values, not appearing in the selected k rows
Online Signature Based Cryptosystem Encoding

1. **Secret**
2. **CRC & Polynomial Construction (P)**
3. **Random weights, Randomly selected elements from $GF(2^r)$ (Chaff Points)**
4. **Random selection of k elements of $GF(2^r)$ (x-values)**
5. **Signature (Sliced)**
6. **Classifier**
7. **Polynomial projections $P(x)$**
8. **Vault**
Look Up Table (Vault)

<table>
<thead>
<tr>
<th>Weight & importance of classifier</th>
<th>r-bit random numbers in $GF(2^r)$ i.e. x</th>
<th>$P(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>$WS3$</td>
<td>1540</td>
<td>3981</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>$WS4$</td>
<td>2151</td>
<td>4367</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>$WS2$</td>
<td>5830</td>
<td>1087</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>$WS1$</td>
<td>7531</td>
<td>9034</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>$WS5$</td>
<td>1567</td>
<td>3304</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>
Divide the query template into k sets each consisting of m slices.

For each set of m slices, mark the rows whose classifier (weights and importance stored in the first column) classifies the signature as genuine.

Take a combination of k pairs of $(x, P(x))$ points from the marked rows and construct the polynomial over $GF(2^r)$.

Compute the CRC of the polynomial.

If CRC is not zero, take another combination of k points, else stop.
Online Signature Based Cryptosystem Decoding

1. Query template
2. Vault
 - Mark rows classified as genuine
 - Combination set
 - Polynomial Construction
 - CRC
 - Is zero
 - No
 - Yes
 - Secret
EXPERIMENTAL RESULTS

- Total 1800 signatures of 45 users with 20 genuine and 20 forged signatures of each user were considered.
- Six important features extracted: p, v_x, v_y, v, az, al
- For training
 - 1350 signatures (15 genuine and 15 forged signatures of each user) were used.
 - A total of 1350 (6×5 for each user) networks with 5 input layer neurons, 3 hidden layer neurons and 2 output layer neurons (in each network) were trained.
- For testing
 - A set of 45 pairs of genuine-genuine were formed by selecting two genuine signatures of each person.
 - Another set of 45 pairs of genuine-forged signatures were formed by randomly selecting one genuine and one forged signature.
- 160-bits secret S: 128-bit secret + 32 bits of CRC
- Degree of polynomial over $GF(2^{32})$: 4
- 17.78% FRR and 2.22% FAR was obtained.
Conclusion

- Important features based on the consistency in the genuine signature and inconsistency in the forged signature were extracted.
- Weighted back propagation algorithm is developed for training the network.
- AdaBoost algorithm is used for combining the decision of the networks.
- 17.78% FRR and 2.22% FAR was obtained.
- This scheme works well for all kinds of signatures without any constraint on the number of high curvature points and zero crossing points.
REFERENCES

Thank You